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This paper presents a model for quasi-two-dimensional MHD flows between two
planes with small magnetic Reynolds number and constant transverse magnetic field
orthogonal to the planes. A method is presented that allows three-dimensional effects
to be taken into account in a two-dimensional equation of motion thanks to a model
for the transverse velocity profile. This model is obtained by using a double perturba-
tion asymptotic development both in the core flow and in the Hartmann layers arising
along the planes. A new model is thus constructed that describes inertial effects in
these two regions. Two separate classes of phenomena are found: one related to iner-
tial effects in the Hartmann layer gives a model for recirculating flows and the other
introduces the possibility of having a transverse dependence of the velocity profile in
the core flow. The ‘recirculating’ velocity profile is then introduced in the transversally
averaged equation of motion in order to provide an effective two-dimensional equa-
tion of motion. Analytical solutions of this model are obtained for two experimental
configurations: isolated vortices generated by a point electrode and axisymmetric
parallel layers occurring in the MATUR (MAgneticTURbulence) experiment. The
theory is found to give a satisfactory agreement with the experiment so that it can
be concluded that recirculating flows are actually responsible for both vortex core
spreading and excessive dissipative behaviour of the axisymmetric sidewall layers.

1. Introduction
Magnetohydrodynamic (MHD) flows at the laboratory scale have been the subject

of many investigations during the past few decades, which has lead to a rather good
level of understanding (see, for instance Hunt & Shercliff 1971 and Moreau 1990). In
this paper, we focus on flows of incompressible fluids, such as liquid metals, in the
presence of a uniform magnetic field B. The magnetic Reynolds number Rm = µσUL
(µ denotes the fluid magnetic permeability, σ its electrical conductivity, U and L are
typical velocity and length scales) is supposed significantly smaller than unity, so that
the actual magnetic field within the fluid is close to B. The fluid flows in a container
bounded by two insulating walls perpendicular to the magnetic field (usually named
Hartmann walls). Nothing is specified for the other boundaries (for instance the wall
parallel to the magnetic field) or for the driving mechanisms (except when particular
examples are considered). The magnetic field is supposed high enough that both the
Hartmann number (Ha = aB

√
σ/ρν) and the interaction parameter (N = σB2a/ρU)

are much larger than unity (here a is the distance separating the two Hartmann
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walls, ρ the fluid density and ν its kinematic viscosity). In such flows, the Hartmann
boundary layers which develop along the Hartmann walls are of primary importance.

One of the most important features of these flows is the fact that turbulence is
only weakly damped by the electromagnetic force. Indeed, because of their tendency
to form quasi-two-dimensional (two-dimensional) structures, these flows induce a
significant current density only within the Hartmann layers of thickness of the order
Ha−1. As a consequence the quasi-two-dimensional core is only weakly affected
by Joule dissipation and a highly energetic turbulence may be observed (Lielausis
1975). In such a configuration, the persistence of two-dimensional turbulence and its
specific properties have been found by Tsinober & Kolesnikov (1974) in decaying
grid turbulence and then by Sommeria (1988) in electromagnetically forced regimes.

To understand this persistence of turbulence and its quasi-two-dimensionality the
reader is referred to a number of earlier papers. In particular, Alemany et al.
(1979) demonstrated how an initially isotropic grid turbulence develops an increasing
anisotropy. However in this experiment, because there is no confinement by Hartmann
walls, the Ohmic damping is of primary importance: the characteristic time for both
the development of the anisotropy and the Ohmic damping is ρ/σB2 and may be
shorter than the eddy turnover time. The key mechanisms are explained in Sommeria
& Moreau (1982) and in a review paper (Moreau 1998). More recently, Davidson
(1997) pointed out the crucial role of the invariance of the component of the angular
momentum parallel to the magnetic field (whereas the components perpendicular to
B decrease on the timescale ρ/σB2) and Ziganov & Thess (1998) achieved a numeri-
cal simulation of this phenomenon exhibiting the sequences of events which lead to
the formation of column-like turbulent structures elongated in the direction of the
magnetic field. But these two theoretical approaches, as well as the experimental part
of Alemany et al. (1979), which do not involve the confinement by Hartmann walls,
are not directly relevant for the quasi-two-dimensional flows considered here.

In this case, Sommeria & Moreau (1982) have described how the magnetic field
tends to suppress velocity differences in transverse planes. If the Hartmann number
and interaction parameter are sufficiently large, this phenomenon can be considered
as instantaneous so that the flow is not dependent on the space coordinate associated
with the field direction anymore, except in Hartmann layers, where the velocity exhibits
an exponential profile given by the classical Hartmann layer theory. Integrating the
equation of motion along the field direction then provides a two-dimensional Navier–
Stokes equation with forcing and linear braking representing electromagnetic effects
and friction in the Hartmann layers. This ‘two-dimensional core model’ has provided
good quantitative predictions for various electromagnetically driven flows (Sommeria
1988). It has been generalized by Bühler (1996) to account for the presence of walls
with various conductivities, and applied to configurations of interest for the design of
lithium blankets in nuclear fusion reactors.

However, this two-dimensional core model is only justified for N and Ha much
larger than unity, and discrepancies with experiments have been observed for moderate
values of the interaction parameter N. Then Ekman recirculating flows are produced
by inertial effects in the Hartmann layer. As a consequence, a spreading of the vortex
core was observed by Sommeria (1988) for vortices generated by a point electrode.
Such inertial effects have been more systematically investigated in recent experiments
on electrically driven circular flows (Alboussière, Uspenski & Moreau 1999). In the
inertialess limit, complete three-dimensional calculations provide linear solutions for
such flows or for parallel layers, but no analytical model describes their nonlinear
behaviour due to inertial effects.
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The present work aims at building such a model by a systematic expansion in
terms of the small parameters Ha−1 and N−1. The two-dimensional core model of
Sommeria & Moreau (1982) is recovered at the leading order, and three-dimensional
effects arise as perturbations.

In the next section we first recall the complete three-dimensional equations. The
electromagnetic effects are interpreted as a diffusion of momentum along the magnetic
field direction, which tends to reduce velocity differences between transverse planes,
thus driving the flow toward a two-dimensional state in the core. We also derive a two-
dimensional evolution equation for quantities averaged across the fluid layer along the
magnetic field direction (which we shall suppose ‘vertical’ to simplify the description).
This vertically averaged two-dimensional equation is always valid, even when the two-
dimensional core structure is not reached, but it then involves terms depending on
the vertical velocity profile, similar to usual Reynolds stresses. For a two-dimensional
core with Hartmann boundary layers, this vertically averaged equation reduces to the
two-dimensional core model of Sommeria & Moreau (1982), that we recall in § 2.2.
We stress that it can be applied even in the parallel boundary layers near the lateral
walls, or in the core of a vortex electromagnetically driven around a point electrode
(scaling as aHa−1/2 like parallel boundary layers). Indeed the two-dimensional core
model compares well with linear theories involving a complete three-dimensional
calculation.

Section 3 is devoted to the detailed investigation of the complete three-dimensional
equations, using a double perturbation method simultaneously in the core and in
the Hartmann layer. A first kind of three-dimensional effect, discussed in § 3.2, is
the presence of recirculating flows driven by inertial effects in the Hartmann layer.
For axisymmetric flows, this is an Ekman pumping mechanism. A second kind of
three-dimensional effect, occurring in the core, is discussed in § 3.3: a perturbation
of the two-dimensional core, with a profile quadratic in the vertical coordinate, is
due to the finite time of action of the electromagnetic diffusion of momentum along
the vertical direction. Thus in unsteady regimes, vortices are ‘barrel’ shaped, instead
of truly columnar. Introducing some of these perturbations of the vertical velocity
profile in the vertically averaged equations yields an effective two-dimensional model,
described in § 3.4. This is the main result of the present paper. The new terms involved
in this model are mostly important for small horizontal scales, leading in particular to
new kinds of parallel layers near curved walls or in the core of vortices, as specifically
discussed in § 3.5.

This effective two-dimensional model could be implemented in numerical compu-
tations of various MHD flows between two Hartmann walls (or with a bottom wall
and a quasi-horizontal free surface). We discuss in § 4 the application to axisymmetric
flows. We apply the results to the electromagnetically generated vortex of Sommeria
(1988) and to the MATUR experiments (Alboussière et al. 1999). The discrepan-
cies of the two-dimensional core model are reasonably accounted by our effective
two-dimensional model, taking into account the influence of recirculating flows.

2. General equations and two-dimensional-core model
2.1. General equations and z-averaging

The fluid of density ρ, kinematic viscosity ν and electrical conductivity σ is assumed
to flow between two electrically insulating plates orthogonal to the uniform mag-
netic field B (see figure 1). We suppose B is vertical for simplicity of description
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Figure 1. The geometric configuration considered in our model.

(although there is no gravity effect). We start from the Navier–Stokes equations for
an incompressible fluid with a priori three-dimensional velocity field u and pressure
p. The non-dimensional variables and coordinates are defined from physical variables
(labelled by the subscript dim) as

xdim =
a

λ
x, tdim =

a

λU
t, j⊥dim = σBUj , pdim = ρU2p,

ydim =
a

λ
y, u⊥dim = Uu⊥, jzdim = λσBUjz, Bdim = Bez,

zdim = az, wdim = λUw,

 (1)

Note that we distinguish the scales parallel and perpendicular (with the aspect
ratio λ) to the magnetic field, and the corresponding velocities (u⊥, w) and currents
(j⊥, jz) accordingly. The subscript ⊥ denotes the vector projection in the direction
perpendicular to the magnetic field. The Hartmann number Ha and the interaction
parameter N are defined as

Ha = aB

√
σ

ρν
, N =

σB2a

ρU
. (2)

Notice that the Reynolds number is defined as Re = Ha2/N. It may be noticed that
all these non-dimensional numbers are based on the layer thickness a.

Using these dimensionless variables, the equations of motion are

∇⊥ · u⊥ + ∂zw = 0, (3a)

λ

N
(∂tu⊥ + u⊥ · ∇⊥u⊥ + w∂zu⊥ + ∇⊥p)− λ2

Ha2
∆⊥u⊥ − 1

Ha2
∂2
zzu⊥ = j⊥ × ez, (3b)

λ

N
(∂tw + u⊥ · ∇⊥w + w∂zw + ∂zp)− λ2

Ha2
∆⊥w − 1

Ha2
∂2
zzw = 0, (3c)

∇⊥ · j⊥ + ∂zjz = 0, (4)

j = −∇φ+ u× ez. (5)

The electromagnetic force j × ez has been included, where the electric current density
j is related to the electric potential φ by (5), representing Ohm’s law. As the action
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of the induced magnetic field is negligible, the electromagnetic equations reduce to
the condition of divergence-free current (4).

The electromagnetic force depends linearly on the velocity field, but in a non-local
way. The current density j can be eliminated in (3b) (see for example Roberts 1967).
Denoting j×ez = f+∇pε in order to distinguish the rotational part and the divergent
part of the Lorentz force, taking twice the curl of j × ez and using (4) and (5) yields

∆f = ∂2
zzu. (6)

Note that pε can be included in the pressure term. In the limit of strong magnetic field,
the force becomes very large, resulting in a fast damping through the Joule effect,
except if ∂2

zzu is small, i.e. the flow is close to two-dimensional. In this case, ∆f ' ∆⊥f,
where ∆⊥ stands for the Laplacian in the plane perpendicular to the magnetic field.
Sommeria & Moreau (1982) proposed interpreting this force as a momentum diffusion
along the direction of the magnetic field, with a ‘diffusivity’ σB2a2/(λ2ρ) depending
on the transverse scale a/λ. This diffusion tends to achieve two-dimensionality in the
fluid interior when the corresponding diffusion time is smaller than the eddy turnover
time a/λU, i.e.

ρ

σB2
λ2 � a

λU
, i.e. λ3 � N. (7)

However in order to take into account weak three-dimensional effects, we shall not
assume two-dimensionality right away, but get a two-dimensional model by integrating
the three-dimensional equations along the direction of the magnetic field (i.e. the z-
coordinate), leading to two-dimensional dynamics for z-averaged quantities. We define
the z-average of any quantity g and its departure from average g′ respectively by

ḡ(x, y) =

∫ 1

0

g dz, g′(x, y, z) = g − ḡ. (8)

The z-average of the momentum equation (3b) then leads to

λ

N
(∂tū⊥ + (ū⊥ · ∇)ū⊥ + (u′⊥ · ∇)u′⊥ + ∇p) =

λ2

Ha2
∆ū⊥ +

1

Ha2
τW + j × ez (9)

for each velocity component u⊥(j ∈ {1, 2}) perpendicular to the magnetic field. Here
τW = −[∂zu⊥(z = 0)− ∂zu⊥(z = a)] denotes the sum of the non-dimensional viscous
stresses at the lower and upper walls. The z-average of the continuity equation (3a),
with the impermeability conditions at the walls, indicates that the z-averaged velocity
is divergence free in two dimensions. Therefore the initial three-dimensional problem
translates into a problem of an incompressible flow ū⊥ satisfying the two-dimensional
Navier–Stokes equation with two added terms: the divergence of a Reynolds stress
tensor ∇ · u′t⊥u′⊥, resulting from the momentum transport by the three-dimensional
flow component, and the wall friction term τW . Knowledge of both terms requires a
model for the vertical velocity profile whose derivation is the main issue of § 3.

The electromagnetic term j× ez can be expressed using the current density jW (x, y)
injected in the fluid through the two walls (at z = 0 and z = 1). Indeed, the z-average
of (4) yields ∇⊥ · j⊥ = jW , and the z-average of (5) yields ∇⊥ × j⊥ = 0 (using the
incompressibility condition ∇⊥ · ū⊥ = 0). Thus the z-averaged current can be expressed
as the gradient of a scalar Ψ0 satisfying a Poisson equation,

j⊥ =
1

Ha
∇Ψ0,

1

Ha
∆⊥Ψ0 = −jW . (10)

We shall consider either the case of insulating walls or the case of a current density
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imposed on electrodes (in more complex cases of conducting Hartmann walls, jW
would be determined by a matching with Ohm’s law in the conductor). The boundary
conditions on the sidewalls for Ψ0 depend on the electrical condition: for electrically
insulating lateral walls (assumed tangent to the magnetic field), there is no normal
current, so that the normal derivative of Ψ0 vanishes (Neuman conditions). By
contrast, for a perfectly conducting lateral wall the current is normal, so that Ψ0 is
constant on the wall (Dirichlet conditions).

Using (10), the electromagnetic force j× ez in (9) can be expressed as a divergence-
free horizontal vector, and the two-dimensional equation of motion is

λ

N
(∂tū⊥ + (ū⊥ · ∇)ū⊥ + (u′ · ∇)u′ + ∇p) =

λ2

Ha2
∆ū⊥ +

1

Ha2
τW +

1

Ha
u0, (11)

where the two-dimensional velocity field u0 is defined as u0 = ∇Ψ0 × ez .
2.2. The two-dimensional core model

2.2.1. The Hartmann friction

In the boundary layers, the z-derivatives dominate in (3a)–(5), resulting in the
Hartmann velocity profile, near the wall z = 0,

u⊥ = u−(1− e−Ha z), (12)

where u− is the horizontal velocity near the wall, but outside the boundary layer. The
corresponding wall stress is

τ− = −Ha u−. (13)

At the wall z = a we shall consider either a free surface, assumed horizontal, with no
stress, or a solid wall, with corresponding velocity u+ and wall stress τ+.

We consider for the moment a two-dimensional core velocity, so that u+ = u− ' u
(neglecting the velocity fall in the boundary layer, as the latter is thin (a/Ha) compared
with the total thickness a). This wall stress introduces a global linear braking with
characteristic time (for one Hartmann layer)

tH =
a2

ν

1

Ha
(14)

and the two-dimensional core velocity field satisfies in non-dimensional form

λ

N
[(∂t + ū⊥ · ∇)ū⊥ + ∇p̄] =

λ2

Ha2
∆ū⊥ +

1

Ha
(u0 − nū⊥), (15)

where n is the number of Hartmann walls (n = 1 in the case with a free surface and
n = 2 for a flow between two Hartmann walls, such that the friction is doubled).

The whole model was discussed by Sommeria & Moreau (1982) and applied to
various cases. It applies for sufficiently large perpendicular scales a/λ, such that
condition (7) is satisfied. In principle it should break down in the parallel boundary
layers, of thickness O(aHa−1/2), but it is interesting to test its validity in this case. We
shall consider two cases for which a three-dimensional analytical solution is available
as a reference: the parallel side boundary layer and an isolated vortex induced by a
point electrode.

2.2.2. Sidewall layers

Let us consider the case of a duct flow with rectangular section, as first solved by
Shercliff (1953). In this case, the flow is driven by pressure drop, which can be modelled
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Figure 2. Comparison between the one-dimensional profile (16) (solid line) and the corresponding
profile for the two-dimensional averaged solution of Shercliff (1953): the dotted line represents the
profile at z = 1/2 and the dot-dashed line the z-average profile.

with a uniform forcing velocity u0 (like in the case of uniform electromagnetic driving
by a transverse current). Then, equation (15) reduces to

λ2

Ha
∂yyūx(y)− (2ūx(y)− u0x) = 0, (16)

the solution of which is, near the sidewall located at y = 0

ū(y)

u0x

= 1− exp

(
−y
√

2Ha

λ

)
. (17)

Notice that this side boundary layer has a thickness a/λ ' a/
√
Ha which results

from a balance between lateral diffusion, with time scale a2/(λ2ν), and the Hartmann
friction with time scale tH (a/λ ' √νtH ). The velocity profile is plotted in figure 2
and compared with the three-dimensional solution (see for instance Moreau 1990).
Both the velocity in the middle plane (z = 1/2) and the z-averaged velocity are
found in reasonable agreement with the two-dimensional core model although the
hypotheses the model relies on are not fully satisfied in these side boundary layers.
The profiles of figure 4 confirm that the three-dimensional solution is not very far
from a two-dimensional core. Notice that the electric condition at the parallel wall
is not of great importance since it only induces a variation of a few percent in the
velocity. By contrast, the Hartman wall has to be insulating as discussed in § 3.1:
indeed, with conducting walls there would be strong jets in the parallel layer which
cannot be described by this model.

2.2.3. Isolated vortices

Here, the two-dimensional model is used to compute the velocity profile for an
isolated vortex driven by the electric current injected at a point electrode located
in the bottom plate, experimentally studied by Sommeria (1988). The upper surface
is free (but remaining quasi-horizontal) and sidewalls are assumed very far away.
Therefore the source term jW in (10) is a Dirac function with integral equal to the
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Figure 3. Comparison between the one-dimensional velocity profile (18) (solid line) and the
two-dimensional solution of Sommeria (1988) for an electrically driven vortex. The dotted line
represents the profile at z = 1/2 and the dot-dashed line the average profile.

injected current I , and the corresponding forcing u0 is azimuthal and depends on the
radius r as

u0θ =
1

r
with Γ =

I

2π
√
ρσν

, (18)

where the velocity and the space coordinate have been rescaled using U = Γ
√
Ha/a

and λ =
√
Ha (which corresponds to the non-dimensional parallel layer thickness).

The radial velocity profile then results from the balance between electric forcing,
Hartmann braking, and lateral viscous stress. A steady laminar and axisymmetric
solution of (15) in polar coordinates is given by

uθ =
1

r̃
−K1(r̃), (19)

where K1 denotes the modified Bessel function of the second kind. Hunt & Williams
(1968) have performed a complete asymptotic three-dimensional resolution of an
analogous problem for large values of the Hartmann number, which can be adapted
to the present case through simple transformations (Sommeria 1988):

vθ =
1

r

(
1− 1

2
exp

(−r2

4z

)
− 1

2
exp

( −r2

4 (2− z)
))

. (20)

As in the previous sub-section, we compare the value of this solution at the mid-
plane (z = 1/2) and its z-average to the two-dimensional solution (19) (see figure 3).
A reasonable agreement between two-dimensional and three-dimensional theories is
obtained, in spite of the very singular behaviour of the three-dimensional solution
near the electrode. It is interesting to notice that the simplified two-dimensional theory
gives the right orders of magnitude for the core diameter and the maximum velocity
as well.
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3. An effective quasi-two-dimensional model
3.1. Non-dimensional basic equations

In this section modifications of the Hartmann profile (12) are derived by a perturba-
tion method. Let us first replace equation (5) by its curl ∇× j = (ez · ∇)u in order to
express the electromagnetic effects directly in terms of the velocity field. Distinguishing
the transverse and parallel components of ∇× j , we get the equations for j:

∇⊥ × j⊥ = ∂zw, (21a)

ez × ∂zj⊥ − λ2(ez × ∇⊥)jz = ∂zu⊥. (21b)

We could deduce from these three equations the equation for the force j⊥ × ez (the
non-dimensional form of (6)), but the information on the boundary condition for jz
would be lost.

In the Hartmann boundary layer, the z-coordinate scales like the Hartmann layer
thickness a/Ha. We use the subscript h to denote the variables within the boundary
layer which are functions of the argument ξ = Ha z, the stretched z-coordinate (uh
and wh denote the velocity components perpendicular and parallel to the magnetic
field, respectively, whereas jh and jξ stand for the horizontal and vertical electric
current density). Then, equations (21a) and (21b) become

1

Ha
∇⊥ × jh = ∂ξwh, (22a)

− λ2

Ha
(ez × ∇⊥)jξ = −ez × ∂ξjh + ∂ξuh. (22b)

They have to be completed by the condition of conservation of electric current (4)
which becomes within the Hartmann layer

1

Ha
∇⊥ · jh = −∂ξjξ. (23)

With the same transformation, the equations of motion (3a, b) become†
ξ = Ha z, (24)

1

Ha
∇⊥ · uh = −∂ξwh, (25a)

λ

N
(∂tuh + uh · ∇⊥uh +Hawh∂ξuh + ∇⊥ph)− λ2

Ha2
∆⊥uh = ∂2

ξξuh + jh × ez. (25b)

The boundary conditions to be satisfied by the solutions of equations (23)–(25b) at
the Hartmann walls are:

uh(ξ = 0) = 0, wh(ξ = 0) = 0, (26a)

jξ(ξ = 0) = jW (26b)

At the edge of the Hartmann layer, the condition of matching with the core solution
implies, for any quantity g (velocity, current density and pressure),

lim
ξ→+∞ gh = g(z = 0) ≡ g−. (27)

† The z-component of the momentum equation, omitted here, just states that the pressure is
independent of z to a precision at least of the order 1/Ha.
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In the case of a free surface at z = 1 (case n = 1), this yields

jz(x, y, 1) = 0, w(x, y, 1) = 0, ∂zu⊥(x, y, 1) = 0. (28)

In the case of a flow between two walls the same condition applies in the plane of
symmetry at z = 1/2.

We are interested in the limit Ha � 1 and N � 1, so that each quantity g is
developed in terms of two small parameters:

g = g(0) + g(1,0) 1

N
+ g(0,1) 1

Ha
+ g(1,1) 1

HaN
+ · · · . (29)

In this expansion, the aspect ratio λ is supposed fixed, and each term depends on
λ. The zero-order equations in the Hartmann layer are given by keeping only the
right-hand terms of (22), (23) and (25). Taking into account the boundary conditions
(26) and the matching conditions (27) gives the classical Hartmann layer profile:

w
(0)
h = 0, u(0)

h = u−(0)
⊥ (1− e−ξ), (30a)

j
(0)
ξ = jW , j (0)

h = (u−(0)
⊥ × ez)e−ξ. (30b)

For the core flow at zero order, (3b) reduces to j (0)
⊥ = 0. The current conservation

(4) then implies ∂zjz = 0, so that j(0)
z = 0 if the wall is insulating or if the current

jW , ∂xjW and ∂yjW are much smaller than unity (jW � λσBU and ∂xjW � aσBU

in physical units)†. Then (21a) yields ∂zw
(0) = 0 and ∂zu

(0)
⊥ = 0 so that the flow is

two-dimensional in the core. The pressure p(0) is also two-dimensional, as it results
from (3c). Matching with the Hartmann layer solution yields

w(0) = 0, u(0)
⊥ = u−(0)

⊥ (x, y), ∇⊥ · u(0)
⊥ = 0. (31)

This solution corresponds to what we call the ‘two-dimensional core model’ in § 2.2.1.
At this point, it should be noticed that the scaling (1) overestimates the current

density and the resulting electromagnetic action in the core. The two contributions
∇φ and u×B in the Ohm’s law (5) balance each other so that the order of magnitude
of their sum is lower. The current in the core and the resulting dynamics for u(0)

⊥ is
then obtained at the next order in the expansion (in § 3.3).

3.2. Recirculating flow in the Hartmann layer

Let us now find out how inertia perturbs at first order the velocity profile within
the Hartmann layer by introducing the zero-order solution in the left-hand side
of (22) and (25). Neglecting the left-hand term (of order Ha−1) in (22b), we get

∂ξ(jh × ez) = −∂ξuh, so that j (1,0)
h × ez = −u(1,0)

h + j (1,0)
h (ξ = 0)× ez , and (25b) becomes

λ(∂tu
(0)
h + u(0)

h · ∇⊥ · u(0)
h + ∇⊥p(0)

h ) = ∂2
ξξu

(1,0)
h − u(1,0)

h + j (1,0)
h (ξ = 0)× ez. (32)

Therefore, the perturbation u(1,0)
h satisfies a linear equation in ξ with a source term

provided by the zero-order solution on the left-hand side. The parallel component of
the momentum equation shows that the pressure is constant along any vertical line
at orders 0, λ/N and 1/Ha, so that p(0)

h = p−(0) = p(0). Using the zero-order solution

† Notice that these conditions are not achieved at the electrodes where the current is injected,
giving rise to a three-dimensional velocity profile, but this effect will be neglected in future calcula-
tions (§ 4) as the surface involved is small in front of the domain considered and the resulting error
on the z-average quantities is generally small and localized.
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(30a), the no-slip condition at the wall (26a) and matching with the core flow results
in an expression for u(1,0)

h :

u(1,0)
h = u−(1,0)(1− e−ξ) + λ

(
1
3
e−2ξ − 1

3
e−ξ + ξe−ξ

)
u−(0)
⊥ · ∇⊥u−(0)

⊥ + 1
2
λξe−ξ∂tu−(0)

⊥ .

(33)

The first term corresponds to the classical Hartmann layer associated with the first-
order perturbation in the core flow, while the other terms describe inertial effects.

Indeed, the first-order horizontal velocity field is not divergent-free, so that a
vertical flow of order (HaN)−1 occurs that can be estimated from the continuity
equation (25a):

w
(1,1)
h = λ∇⊥ · ((u−(0)

⊥ · ∇⊥)u−(0)
⊥
) {− 5

6
+ 2

3
e−ξ + ξe−ξ + 1

6
e−2ξ

}
. (34)

In the limit ξ → +∞, this vertical flow tends to

w
(1,1)
h = − 5

6
λ∇⊥ · ((u−(0)

⊥ · ∇⊥)u−(0)
⊥
)
. (35)

In an axisymmetric configuration, this would describe an Ekman recirculation (or
tea-cup phenomenon). In fact, depending on whether the acceleration variation of a
fluid particle located at the top of the Hartmann layer is positive or negative, the
particle will be ejected in the core flow or pumped down to the Hartmann layer.
This effect has been calculated for the classical Ekman layer, in a rotating frame of
reference, by Nanda & Mohanty (1970), while Loffredo (1986) extended to MHD the
classical solution of von Kármán (1921) for a boundary layer near a rotating plate.
The result (35) generalizes such calculations for any bulk velocity field u⊥.

In the same way, the electric current (30b) tends to a vertical electric current outside
the Hartmann layer with a z current density of order λ/(HaN), obtained from the
current conservation equation (23).

Lastly, the wall friction associated with the velocity profile including inertia (33) is

τ− = Ha∂ξ
1

N
u(1,0)
h (ξ = 0) =

Ha

N
u−(1,0)
⊥ +

λHa

N

{
1
2
∂tu
−(0)
⊥ + 2

3
(u−(0)
⊥ · ∇⊥)u−(0)

⊥
}
. (36)

Once again, the first term corresponds to the classical linear Hartmann friction
associated with the first-order perturbation in the core flow, while the other terms
describe the viscous friction associated with inertial effects.

3.3. First-order perturbation in the core

3.3.1. Recovering the two-dimensional core equation

The equation which governs the zero-order quantities is derived from the first order
in the expansion. Indeed, the left-hand side of (3b) can be approximated using the
zero-order velocity

λ

N

(
∂tu

(0)
⊥ + u(0)

⊥ · ∇⊥u(0)
⊥ + ∇⊥p(0)

)
= j⊥ × ez, (37)

so that j⊥ does not depend on z, and jz is linear in z due to the current conservation
(4).

As shown in § 3.1, j (0)
⊥ = 0. This implies that σUB is not a good order of magnitude

for j⊥ (it is still correct that u × B ∼ σUB and −∇φ ∼ σUB but their sum is of a
lower order). Indeed, a non-zero value of the electric current density within the core
results only from the presence of a non-electromagnetic force in the motion equation
(such as inertia). A balance then sets up between the Lorentz force and the other one
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and both have to be of the same order. Looking for the effects of inertia in the core
then requires that the current be of order λU2/(aB). This value determines the force
j⊥ × ez where the current density j⊥ has to be fed by the electric current coming out
of the Hartmann layer.

Introducing the zero-order current (30b) in the left-hand side of the current conser-
vation equation (23) yields the distribution of vertical current j(0,1)

ξ = j
(0,1)
W −(∇⊥×u−(0)

⊥ )

(1− e−ξ) within the Hartmann layer. Due to the matching condition (27), this yields
a current j−(0,1)

z = j
(0,1)
W −∇⊥ × u−(0) at z = 0 which feeds the core. Since jz is linear in

z, this condition, together with the upper boundary condition (28), determines both
the vertical current j(0,1)

z , and the corresponding horizontal current j (0,1)
⊥ in the core

(and the related electromagnetic force j (0,1)
⊥ × ez):

j(0,1)
z = (1− nz)

(
jW − 1

Ha
∇⊥ × u−(0)

⊥

)
, (38a)

∇⊥ × (j (0,1)
⊥ × ez) = ∇⊥ · j (0,1)

⊥ = − 1

Ha
∇⊥ × u−(0)

⊥ + jW . (38b)

Using (21a), we can also get −∇⊥×j (0,1)
⊥ = ∂zw

(0,1), so that w must be a linear function
of z. It vanishes at the free surface z = 1 and matches with the Hartmann layer at
z = 0:

w(0,1) = w−(0,1)(1− nz), (39)

and

∇⊥ × j (0,1)
⊥ = −nw−(0,1)ez. (40)

The vertical component of the velocity w− is given by (35), and scales as (NHa)−1 �
Ha−1. Thus ∇⊥ × (j (0,1)

⊥ × ez) = 0, and we can write the force in (37) as

j (0,1)
⊥ × ez = u0 − nu(0)

⊥ (41)

with u0 = ∇⊥Ψ0 × ez and ∆⊥Ψ0 = −jW . The order of magnitude of the Lorentz force
in the core is then σB2U/ρHa. As ||j⊥dim|| ∼ λU2/(aB), the effects of inertia are only
pertinent if N/(λHa) ∼ O(1), so that approximating j⊥ by its higher order, (37) can
be written

∂tu
(0)
⊥ + u(0)

⊥ · ∇⊥u(0)
⊥ + ∇⊥p(0) =

N

λHa
(u0 − nu(0)

⊥ ). (42)

The cases where N/(λHa) is not of order one correspond to cases where either
the inertia or Lorentz force is not leading-order force. If N/(λHa) � 1, the Lorentz
force is not dominant anymore so that the core flow is not two-dimensional in a first
approximation: this is the hydrodynamic case, which is outside our assumptions. In
the case N/(λHa)� 1, inertia is negligible so that the flow is strictly two-dimensional
and adapts instantly to the electromagnetic force. Equation (42) is then still valid in
the degenerate form

u0 = nu(0)
⊥ . (43)

Lastly, using the same method, the effects of viscosity are found to be relevant if
Ha ∼ λ2. This condition is satisfied in parallel layers for which λ = Ha1/2. In the
laminar case, inertia is negligible and assuming that u(0)

⊥ is still two-dimensional (which
is a good approximation as shown by figure 2 and discussed in § 3.5) an equivalent to
(42) in parallel layers

− λ2

Ha
∆⊥u(0)

⊥ = u0 − nu(0)
⊥ . (44)
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collecting (42) and (44) into a single model yields

λ

N
(∂tu

(0)
⊥ + u(0)

⊥ · ∇⊥u(0)
⊥ + ∇⊥p(0))− λ

Ha
∆⊥u(0)

⊥ =
1

Ha
(u0 − nu(0)

⊥ ). (45)

3.3.2. Three-dimensional effects in the core: the ‘barrel’ effect

Let us now investigate the occurrence of three-dimensional effects in the core flow.
At first order, (3b) takes the general form

F = j (0,1)
⊥ × ez, (46)

where the small quantity F = (λ/N)(∂tu
(0)
⊥ + u(0)

⊥ · ∇⊥u(0)
⊥ + ∇⊥p(0)) depends on the

zero-order velocity, which is two-dimensional, so that j⊥ × ez is independent of the
vertical coordinate as already stated. Then the electromagnetic equations (21), and
their consequences (39) and (40), yield the three-dimensional perturbation in the
velocity. Indeed introducing (39) and (40) in (21b) (differentiating in z and taking into
account that ∂2

zzjz = −∂z(∇⊥ · j⊥) = 0) gives the vertical dependence of the velocity
profile:

−λ2[∆⊥F − ∇⊥(∇⊥ · F )] = ∂2
zzu

(0,1). (47)

Since the action F is not dependent on the vertical coordinate, the response of the
flow must exhibit a parabolic velocity profile. Moreover the free-surface condition
∂zu⊥ = 0 at z = 1 (or z = 1/2 in the case of two Hartmann walls, n = 2) yields

u(0,1)
⊥ (x, y, z) = u−(0,1)(x, y) + 1

2
z

(
z − 2

n

)
λ2LF (x, y). (48)

The operator L is defined by

L : F 7−→ LF = −∆⊥F + ∇⊥(∇⊥ · F ). (49)

If no flow is injected through the upper or lower boundaries of the core (i.e. w− = 0)
then the horizontal induced current in the core is irrotational. The physics leading to
this result can be easily understood: according to (46), introducing a two-dimensional
force (or acceleration) in the core induces a two-dimensional (divergent) horizontal
electric current in the core. To feed the latter, a vertical electric current has to appear
such that jz(x, y, z) − j−(x, y) ∼ z. The related electric potential is then quadratic:
φ(x, y, z) ∼ φ−(x, y)z2. As j⊥ is two-dimensional, Ohm’s law j⊥ = ∇φ + u⊥ × B
requires a quadratic velocity u⊥(x, y, z) ∼ u−⊥(x, y)z2.

Therefore, adding a two-dimensional force not only adds a two-dimensional ad-
ditional electromagnetic reaction, but introduces a three-dimensional component in
the velocity profile. Vortices do not appear as ‘columns’ as described in Sommeria &
Moreau (1982) anymore, but may rather look like ‘barrels’, like the ‘cigars’ found by
Mück et al. (2000) thanks to direct numerical simulations.

Writing explicitly F in relation (48) and using the zero-order evolution equation
(45), we get

u⊥ = u−(0)
⊥ − 1

2
z

(
z − 2

n

)
λ2

Ha
∆⊥(u0 − u−(0)

⊥ ). (50)

Notice that the term in N−1 is cancelled because of the evolution equation, so that
the resulting perturbation is in Ha−1.

This result can be interpreted in terms of the electromagnetic diffusion time td =
λ2ρ/(σB2) as discussed by Sommeria & Moreau (1982). Considering the zero-order
solution of (3b) is equivalent to setting an infinite interaction parameter and Hartmann
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number, and thus a zero electromagnetic momentum diffusion time. That means that
velocity differences between transverse planes are instantly damped so that the core
flow is two-dimensional. By contrast, considering a finite diffusion time, the velocity
differences are not completely removed and the parabolic profile appears at first order.

3.4. Summary and commentary

Combining the corrections to the two-dimensional profile respectively due to the
barrel effect and the recirculating flow occurring in the Hartmann layer yields a new
vertical profile of horizontal velocity. Notice that the full calculation requires the
profiles of

u(0,1)
h = u−(0,1)

⊥ (1− e−ξ),

u(1,1)
h = u−(1,1)

⊥ (1− e−ξ) +
(

1
3
e−2ξ − 1

3
e−ξ + ξe−ξ

)
×(u−(0,1)

⊥ · ∇⊥u−(0)
⊥ + u−(0,1)

⊥ · ∇⊥u−(0)
⊥
)

+
ξ

2
e−ξ∂tu−(0,1)

⊥ ,

u(0,1)
⊥ = u−(0,1)

⊥ and u(1,1)
⊥ = u−(0,1)

⊥
which are obtained by exactly the same calculations as in sections §§ 3.1–3.3. Summing
all these terms and using (29) yields the final expressions for the velocities.

In the Hartmann layer, we have

uh = u−⊥(1− e−ξ) +
λ

N

(
1
3
e−2ξ − 1

3
e−ξ + ξe−ξ

)
u−⊥ ·∇⊥u−⊥+

λ

N

ξ

2
e−ξ∂tu−⊥+O

(
λ2

Ha2

)
+ · · ·

(51)

and

wh =
λ

HaN
∇⊥ · [(u−⊥ · ∇⊥)u−⊥]

{− 5
6

+ 2
3
e−ξ + ξe−ξ + 1

6
e−2ξ

}
+ · · · . (52)

Note that wh induces a vertical velocity component

w = −5

6

λ

HaN
∇⊥ · [(u−⊥ · ∇⊥)u−⊥](1− nz)

in the core.
The horizontal velocity u⊥(x, y, z, t) in the core is given by (50) and it contains no

term in N−1:

u⊥(x, y, z, t) = u−⊥(x, y, t)+
λ2

Ha

1

2
z

(
z − 2

n

)
∆⊥(u0−u−⊥)+O

(
λ4

Ha2
,
λ3

HaN

)
+ · · · . (53)

The velocity field is therefore determined from the velocity u−⊥(x, y) close to the

wall (but outside the Hartmann layer). Each order u−(i,j)
⊥ of this field u−⊥ evolves with

time according to an effective two-dimensional equation which can be obtained at the
next order of the expansion. However, it is simpler to use the average equation (11),
as performed in next section.

3.5. A new effective two-dimensional model

Two kinds of three-dimensional mechanisms have been pointed out in previous
sections: the recirculating flow in the Hartmann layer, of order 1/N and the ‘barrel’
effect in the core of order 1/Ha. Both of them alter the Reynolds tensor and the upper
and lower wall stresses, appearing in (11). As inertial effects are being investigated,
we now restrict the analysis to them and discard the z dependence of the horizontal
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velocity in the core; but in comparison with the two-dimensional core model (15),
vertical velocities are allowed.

Notice that as two different scalings have been used for the Hartmann layer and
the core flow, the vertical average of any quantity g is computed using

ḡ =

∫ 1

0

g dz +
n

Ha

∫ +∞

0

g(Ha z)− g(z = 0) d(Ha z).

With these vertical velocity profiles, (51) in the Hartmann layer and u⊥(x, y, z, t) =
u−⊥(x, y, t) in the core, the averaged velocity ū⊥ is related to the velocity u−⊥ in the core
near the wall z = 0 by

ū =
(

1− n

Ha

)
u−⊥ +

nλ

HaN

(
5
6
u−⊥ · ∇⊥ + 1

2
∂t
)
u−⊥, (54)

where ū is then a function of u−⊥, as well as the velocity profiles (53) and (51). In order
to express the evolution equation (11) in terms of the average velocity ū, which has
the advantage of being two-dimensional and incompressible, (54) has to be inverted
(taking into account that (HaN)−1 � 1 so that u−⊥ ' ū for the highest-order terms):

u−⊥ =
(

1 +
n

Ha

)
ū− nλ

HaN

(
5
6
ū · ∇⊥ + 1

2
∂t
)
ū. (55)

The wall friction τ− = −Ha∂ξuh(ξ = 0) is obtained from (51),

1

Ha2
τ− =

1

Ha
u−⊥ +

λ

HaN

[
1
2
∂tu
−⊥ + 2

3
u−⊥ · ∇⊥u−⊥

]
. (56)

It can be expressed in terms of the variable ū, using (55). Including the top wall
friction if n = 2, this yields the total wall stress:

1

Ha2
τW = − n

Ha
ū
(

1 +
n

Ha

)
− nλ

HaN

[
1

2
∂tū
(

1 +
n

Ha

)
+ ū · ∇⊥ū

(
2

3
+

11n

6Ha

)]
. (57)

Furthermore, the divergence of the Reynolds tensor appearing in (11) is

∇⊥ · u′⊥tu′⊥ = u′⊥ · ∇⊥u′⊥ =
n

2Ha
ū− nλ

HaN

(
7
36
Dū + 1

8
∂t
)

(ū · ∇⊥)ū (58)

where the operator Dv is defined by

Dv:F 7−→ DvF = (v · ∇⊥)F + (F · ∇⊥)v. (59)

Writing explicitly the expressions for τW and u′⊥ · ∇⊥u′⊥ in (11) yields an effective
two-dimensional system of equations for the average velocity ū. This equation can be
simplified by introducing the new variables

v = (1 + 7/(6Ha) + 11/6Ha2)ū, v0 = (1 + 7/(6Ha) + 11/6Ha2)u0, (60a)

p′ = (1 + 7/(6Ha) + 11/6Ha2)p, t′ = (1 + n/Ha+ n2/Ha2)−1t, (60b)

α = 1 + n/Ha, (60c)

∇⊥ · v = 0, (61)

λ

N

(
dv

dt′
+ ∇⊥p̄′

)
=

λ2

Ha2
∆⊥v +

1

Ha
(v0 − nαv) +

nλ2

HaN2

(
7
36
Dv + 1

8
∂t′
)
v · ∇⊥v (62)
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Figure 4. Variation with z of the streamwise velocity profile in three-dimensional solutions of
parallel layers (Moreau 1990). Inner solid line: z = 0, dotted line: z = 0.4, dashed line: z = 0.7,
dash-dotted line: z = 0.9, outer solid line: z = 1.

or in dimensional form (omitting the subscript dim)

dv

dt′
+ ∇⊥p̄′ = ν∆⊥v +

1

tH
(v0 − nαv) +

ntH

Ha2

(
7
36
Dv + 1

8
∂t′
)
v · ∇⊥v. (63)

Notice that it is possible to build a model that accounts for both three-dimensional
effects in the core (barrel effect) and inertial effects occurring in the Hartmann
layer. In practice, a complex two-dimensional equation is obtained including seventh-
order derivatives terms. Simplicity, which is among the main advantages of the
two-dimensional model is then lost. In most laboratory experiments, the effects of
inertia are more crucial because they occur for moderate values of N whereas the
barrel effect appears for moderate Hartmann numbers (Ha is much higher than N in
usual experimental conditions).

It is also noticeable that the model built here relies on two assumptions: the
existence of the Hartmann layer and two-dimensionality of the core. The first one
is still rigorously valid in parallel layers as the thickness of the latter aHa−1/2 is big
in comparison with the Hartmann layer thickness aHa−1. Two-dimensionality is not
achieved in parallel layers but figure 4 shows that the three-dimensional part of the
horizontal velocity field is only 10% of the velocity. Moreover, this departure is still
less relevant since it is associated with no recirculating velocity, which is the key
ingredient by which the behaviour of the flow can be considerably altered. Therefore
we consider that the model can be used in parallel layers, and generates only a small
systematic error in the velocities which is not very relevant in comparison with the
correction obtained when accounting for inertial effects in the Hartmann layer (see
examples in § 4).

The model (63) has been numerically implemented (work in preparation). The last
term has smoothing properties analogous to viscosity. It produces energy decay and
spreading of vortices.
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4. Axisymmetric flows
This section is devoted to the implementation of the above model for simple

axisymmetric flows, which allow explicit calculation and therefore an easy comparison
with the MATUR experiment (Alboussière et al. 1999) and for the isolated vortices
of Sommeria (1988). For steady axisymmetric flows, the general expression (63) with
non-dimensional polar coordinates, using the previous set of characteristic values (1)
is strongly simplified to ∂θ = 0, ∂t = 0, ūr = 0. Its azimuthal component yields

7

36

nλ

HaN2

1

r2
∂r(rv̄

3
θ) =

λ

Ha2

1

r2
∂r

(
r3∂r

vθ

r

)
+

1

λHa
(v0θ − nαvθ). (64)

4.1. Axisymmetric parallel layers

We consider here the case of a flow bounded by a vertical cylindrical wall, a circle
of radius R in the two-dimensional average plane. We seek the nonlinear three-
dimensional effects in the boundary layer arising along this wall. It is natural to place
the frame origin at the centre of the circle. Thus, if R is large enough, then in the
vicinity of the wall it will be quite justified to assume that 1/r ≈ 1/R � ∂r , so that
terms which are of order 1/R2 are negligible, which leaves equation (64) in the form

7

36

Ha

N2

n

R
∂rv

3
θ = ∂2

rrvθ +
Ha

λ2
[−nαvθ + v0θ]. (65)

In the case of a concave parallel boundary layer, the following variables are relevant:

y = (R − r)√nαHa and vθ =
v0θ

nα
ṽθ; (66)

they transform (65) and the corresponding boundary conditions to

−C∂yṽ3
θ = ∂2

yyṽθ + 1− ṽθ,
lim
y→+∞ ṽθ = 1,

ṽθ(y = 0) = 0,

 (67)

where

C =
7

36

n−3/2

α5/2

√
Ha

N

a

R
.

The alternative case of a convex boundary layer, such as the one that would arise
along the outside of a circular cylinder, could be achieved by just changing the sign of
the non-dimensional constant C . This constant represents the strength of the inertial
transport compared to viscous dissipation and electric forcing. It is indeed expected
to change the traditional boundary layer profile and the wall friction accordingly.
It is quite relevant since it points out the dissipative role of the boundary layer
which allows the loss of global quantities such as energy or angular momentum to be
assessed. Therefore numerical computation has been performed that gives ∂yṽθ(0) for
a wide range of values of C . A shooting method featuring a Runge–Kutta algorithm
provides the points plotted in figure 5.

An analytical approximation provides a reliable description for large values of C .
Indeed, (67) can be integrated over [0,+∞] to give

∂yṽθ(0) + C +

∫ +∞

0

(ṽθ − 1) dy = 0. (68)

In boundary layers, the velocity fall is strongly concentrated in the vicinity of the
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Figure 5. Velocity profile slope at the wall as a function of the coupling number. Diamonds:
numerical simulation of equation (67), solid line: model (71), dashed line: same as (71) but with the
velocity profile (69) in the layer replaced by a straight line.

wall, which suggests replacing the profile roughly by an exponential with ∂yṽθ(0) as
wall slope,

ṽθ(y) ' 1− exp(−∂yṽθ(0)y), (69)

so that ∫ +∞

0

(ṽθ − 1) dy = − 1

∂yṽθ(0)
, (70)

which gives the approximate relation

∂yṽθ(0) =
C +
√
C2 + 4

2
, (71)

the asymptotic behaviour of which gives a satisfactory fit to numerical results (see
figure 5)

∂yṽθ(0) ∼
C→+∞C + O

(
1

C

)
for a concave wall, (72)

∂yṽθ(0) ∼ − 1

C
+ O

(
1

C2

)
for a convex wall. (73)

In the case of a concave wall, the typical thickness of the parallel layer is shrunk
by the nonlinear angular momentum transfer, which feeds wall dissipation, giving rise
to a different kind of boundary layer of typical non-dimensional thickness 1/C or
36
7

(N/Ha)Rn3/2 in physical units. It should be mentioned that this kind of layer cannot
be compared to the one resulting from a balance between inertial and electromagnetic
effects (of typical thickness aN−1/3) as our parallel layer does not result from such a
balance: it is a classical parallel layer in which inertial effects driven by the Hartmann
layer are taken in account, which is very different.

This mechanism can be understood as an Ekman pumping whose meridian recircu-
lation induces an angular momentum flux toward the wall corresponding to the first
term in (64). The radial velocity can be estimated using the three-dimensional con-
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Figure 6. Radial section of the MATUR experimental setup.

tinuity equation (3a) in the core where it reduces to ur ' w− = 5
6
(λ/HaN)(ṽ2

θ/R) (in
non-dimensional form, using the initial set of characteristic values (1)). The boundary
layer then results from the balance between transport, forcing and viscous dissipa-
tion. When C is large enough, forcing vanishes from the balance and the boundary
layer exclusively dissipates the transported angular momentum. If the wall is convex
(C < 0), the momentum flux is reversed, and the boundary layer tends to widen.
Figure 5 shows that the analytical curve (71) is no longer pertinent for negative
values of C . This is quite natural as it is justified for a thin boundary layer. Indeed,
one can expect that the larger the layer, the more determinant the shape of the profile
is for the computation of the velocity loss.

4.2. Consequences on the global angular momentum – the MAgnetic TURbulence
(MATUR) experiment

The results of the previous sub-section are now compared with experimental results
obtained on the device MATUR. It is a cylindric container (diameter 0.2 m) with
electrically insulating bottom and conducting vertical walls (figure 6). Electric current
is injected at the bottom through a large number of point eclectrodes regularly spread
along a circle whose centre is on the axis of the cylinder. It is filled with mercury
(1 cm depth) and the whole device is plunged in a vertical magnetic field. The injected
current leaves the fluid through the vertical wall inducing radial electric current lines
and gives rise to an azimuthal action on the fluid in the annulus between the electrode
circle and the outer wall. The injected current jW can be considered as a Dirac delta
function, centred at the injection radius re, with integral equal to the injected current
I: jW = I/(2πre)δ(r− re). The corresponding forcing is azimuthal and given from the
solution of (10), which yields:

v0 ' ū0 = − B
ρa

I

2πr
tHeθ. (74)

This annulus of fluid then rotates and gives rise to a concave parallel layer along
the outer wall. The upper surface of mercury may be either free or not. But if free,
oxidation of mercury makes the upper surface rigid so that a Hartmann layer occurs
at the top anyway. Therefore two Hartmann layers (at the top and the bottom) have
to be considered (n = 2). A more exhaustive description of the experimental device
and results can be found in Alboussière et al. (1999).

The geometry of the fluid motion suggests that an Ekman recirculation occurs,
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Figure 7. Global angular momentum in the MATUR experimental setup versus total injected
electric current for B = 0.17 T and re = 93 mm. Diamonds: experimental measurements, solid line:
theoretical curve for obtained from (79).

pushing a radial flow toward the parallel sidewall layer. One can expect the angular
momentum to decrease significantly there, altering the behaviour of the layer. A
good global description of this effect is provided by the balance of the total angular
momentum L =

∫
rūθ d2r. The equation for L can be derived by integration over the

whole domain of (63) after multiplication by r (assuming v ' ū):
dL

dt
= F − S − 2L

tH
, (75)

where the global electric forcing F and the viscous dissipation at the sidewall layer S
take the form

F =
IB

2ρa
(R2 − r2

e ), (76a)

S = 2πR2ν∂yuθ|wall . (76b)

At small forcing, the parallel layer thickness is of order aHa−1/2, so the correspond-
ing viscous effect on the angular momentum is negligible in comparison with the
Hartmann friction (in a ratio of order Ha1/2). Therefore S can be neglected in (75)
and

F = 2
L

tH
(77)

in a steady regime. This corresponds to a linear behaviour of L versus the forcing
current I for moderate I (I . 7A see figure 7). Notice that the velocity near the wall
is then derived from the recirculation Γ , through U = Γ/(2πR) and it coincides with
(74) at r = R, U = ū0(R). Comparing U with L, given from the forcing F by (77),
gives

L = πR(R2 − r2
e )U. (78)

We observe that the velocity profile remains unchanged even for large currents, so
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Figure 8. Global angular momentum in the MATUR experimental setup versus total injected
electric current for B = 2 T and re = 54 mm. Diamonds: experimental measurements, solid line:
theoretical curve obtained from (79).

we can use (78) to express the velocity near the wall as a function of L. Introducing
this velocity U in the boundary layer model of § 4.1, we can deduce the wall stress
S . We have found that the asymptotic expression (72) is valid for the experimental
conditions considered, allowing a simple expression for ∂yuθ|wall in (76). It is then
possible to assess every term in (75) which provides a relation between the injected
electrical current and the global angular momentum, which can be compared to
experimental results:

I = 4

√
σρν

R2 − r2
e

L+
7

18

√
νρ5σ−3L3

(R2 − r2
e )

3π2R2B4α3
. (79)

Figures 7 and 8 show experimental measurements of the global angular momentum
and theoretical curves. Our model provides a reasonable prediction of the experimental
results. This comparison must be put in perspective as MATUR is a very complex
device where a wide variety of phenomena occurs. In particular, big vortices are
present and break the axisymmetry: first, they interact with each other, giving rise to
thin shear layers where dissipation occurs, and secondly they interact with the walls,
inducing separations in the wall side layers. Furthermore, the Hartmann layer may
become turbulent which the present theory does not take in account. Indeed, one
can refer to the heuristic criterion established by Hua and Lykoudis (1974) which
states that in rectangular ducts, considerable turbulent fluctuations are observed in
the vicinity Hartmann layer for values of Re/Ha above 250. For B > 0.8 T, the
smallest values of this parameter are about 500. For all these reasons, it is natural
that our model predicts a dissipation smaller than observed in the experiment. A
numerical simulation of (63) may be able to take unsteadiness into account and to
provide better results.

For a higher field (figure 8), the saturation has disappeared from experimental
measurements, which are then closer to the linear theory curve. This is quite natural
as the nonlinear effects are proportional toHa−3, which dramatically falls for increased
values of B. Though the experimental points fit a straight line, this line does not have
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exactly the same slope as the one predicted by the linear theory, which is linearly
dependent on 1/tH . Once again, additional phenomena have to be invoked. Actually,
the bottom of the experimental device contains many conducting electrodes through
which electric current may pass: in these areas, the damping may be significantly
increased, leading to a reduction of the damping time ‘felt’ by the global angular
momentum. This phenomenon is certainly responsible for a systematic departure of
theory from experiment.

4.3. Isolated vortices induced by a point electrode: experimental comparison

The present subsection is devoted to the improvement of the two-dimensional model
of isolated vortices mentioned in § 2.2.3 taking into account Ekman recirculation.
Indeed, the Sommeria experiments (1988) clearly show that the core of an isolated
vortex tends to widen when the injected current is strong. As an Ekman secondary
flow is strongly suspected of being responsible for this phenomenon, the axisymmetric
equation of motion provides a good analytical model for it.

Let us then consider a configuration similar to the one described in § 2.2.3 in which
the electric current is injected through a cylindrical electrode with its centre at the
centre of the vortex, introducing a no-slip condition at this point (and an upper free
surface so that n = 1). We suppose that the forcing satisfies (18). The equation motion
of (64) has to be rescaled using the scalings of § 2.2.3: λ =

√
Ha and U = (Γ/a)

√
Ha.

We assume u0 ' v0 since Ha � 1, which leaves the non-dimensional equation of
motion in the form

Ct
1

r2
∂r
(
rv3
θ

)
=

1

r2
∂r

[
r3∂r

(vθ
r

)]
− vθ +

1

r
, (80)

with the corresponding boundary conditions.

vθ(b) = 0, lim
r→+∞ vθ = 0, (81)

where

Ct =
7

36

Γ

a2

1

N2
.

One can also express the non-dimensional number Ct as a function of the local
interaction parameter Nc introduced by Sommeria (1988):

Nc =
σB2

ρ

a2

ΓHa
, Ct =

7

36

1

N2
c

. (82)

This result shows that the local interaction parameter is the relevant non-
dimensional number which controls the radial profile of azimuthal velocity of the
vortex.

For an electrode radius b = 0.1, the rod is ten times thinner than the typical parallel
layer scale so that this case may be compared to the experimental case. Indeed,
reducing the electrode diameter when it is significantly smaller than 1 does not have
any relevant effect on the result. The solutions have been numerically computed
using a shooting method featuring a Runge–Kutta algorithm. The radial profile of
angular momentum has been processed out from the result. We have computed it
for B = 0.5 T and for two different injected currents (I = 50 mA and I = 200 mA
respectively corresponding to Ct = 8.85 and Ct = 141.65); these cases are thus highly
nonlinear and one can expect the recirculating flow to be significant. The profiles
are reported in figure 9 and compared with the experimental results obtained by
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Figure 9. Vortex radial profile of angular momentum for B = 0.5 T. Squares: experimental mea-
surements for injected current I = 0.05 A, circles: experimental measurements for I = 0.2 A, solid
line: analytical profile without nonlinear effects, partly dotted line: numerical profile for I = 0.05 A,
dotted line: numerical profile for I = 0.2 A. Note that numerical precision problems do not allow
profiles for all values of r.
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Figure 10. Experimental setup for Sommeria’s vortex study: cross-section of the circular tank with
a schematic representation of the current supply and device for potential measurement. Dimensions
are in mm.

Sommeria (1988). The radial velocity can be estimated from the continuity equation
(3a) ur = 5

6
(λ/HaN)(ṽ2

θ/r) in non-dimensional form, using (1).
The experimental device used by Sommeria is similar to the MATUR experiment

except that the electrical current is injected through a single central electrode and the
upper surface is free (see figures 10 and 11). The velocity measurements are obtained
using a visualization technique including streak photos of particles in the fluid. The
numerical simulations performed using our nonlinear model are in good agreement
with the experimental results: it turns out that the vortex core actually broadens for
higher values of the electric current, i.e. for highest values of Ct. This is due to a
radial flow resulting from inertial effects. Indeed, in axisymmetric configuration, the
vertical flow w− (52) is proportional to (1/r)∂r(u

2
θ/r) so that a strong flow rate from

the Hartmann layer occurs at the centre of the vortex. Mass conservation is ensured,
as a weak flow toward the layer exists for large r. This is analogous to traditional
Ekman pumping.

To quantify this phenomenon of spreading vortices, we have plotted the radius Rv of
the vortex obtained from the numerical simulations of (80) versus the value of the core-
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Figure 11. The electric current streamlines (a) without magnetic field, (b) in a strong magnetic field.
The Hartmann layer, the outer layer parallel to the field and the vortex core are shown, as well as
a vertical velocity profile.
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Figure 12. Vortex core radius normalized by its value without the nonlinear effect r0 (corresponding
to very low injected electric current) versus the inverted core interaction parameter. The results are
obtained from numerical simulations of equation (80).

related interaction parameter Nc. The results are plotted in figure 12 and it appears
that Rv ∼ N−1

c . This scaling law is in agreement with experimental measurements
of Sommeria (1988). However, a quantitative comparison of the prefactor is difficult
because the experimental results are derived from electric potential measurements
which are sensitive to the singularity at the electrode.

5. Conclusion
Our analysis applies to flows in ducts with transverse uniform magnetic field,

a standard configuration of interest in various MHD problems. These flows often
involve complex three-dimensional velocity fields, with both transverse structures and
vertical variations in the thin Hartmann boundary layer. The latter is very difficult
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to resolve numerically at high Hartmann number, due to the high spatial resolution
required. Our effective two-dimensional model provides thus a great simplification.

This model has been derived by a systematic expansion in terms of the two small
parameters 1/N and 1/Ha, providing a good understanding of its range of validity.
At zero order, we recover the two-dimensional core model of Sommeria & Moreau
(1982) which is already a good approximation even in parallel layers near lateral walls
or around a central electrode, scaling like Ha−1/2 (as seen in § 2).

The expansion is valid for sufficiently large transverse scales λ. In principle λ <
Ha−1/2 has to be satisfied, but the zero-order solution turns out to provide good
results even in parallel layers, of thickness of order Ha−1/2. Perturbations at the scale
of order Ha−1 can arise in the Hartmann layer, when it becomes unstable. This is
experimentally observed for N/Ha > 250. Such a small-scale effect is not captured
by our expansion.

A first correction to the two-dimensional core model occurs as weakly three-
dimensional velocity profiles parabolic in z at first order. This effect can be interpreted
as the consequence of the finite diffusion time of momentum by electromagnetic effects.
This diffusion leads to complete two-dimensionality only in the limit of very large
magnetic field (Ha→∞). Vortices look like ‘barrels’ instead of columns. We however
find that this essentially linear effect has little influence on the global dynamics,
involving z-averaged quantities.

The second perturbation corresponds to Ekman recirculation effects within the
Hartmann boundary layers. This recirculation transports momentum, which signifi-
cantly modifies the dynamics of the z-averaged velocity. These recirculating effects
can also have interesting consequences for the transport of heat or chemicals away
from the Hartmann layers.

Analytical solutions of our effective two-dimensional model in axisymmetric con-
figurations appear in reasonable agreement with laboratory experiments. The model
explains the additional dissipation of angular momentum due to radial transport by
recirculation. For the experiments of Sommeria (1988), it explains the spreading of
the vortex core and fits the experimental law in N−1.

Finally, it is noteworthy that recirculation effects lead to new scaling laws for side
layers along concave or convex walls parallel to the magnetic field. Along a convex
wall, the side layer is widened according to equation (67) whose numerical solution is
plotted in figure 5. Along a concave wall, on the other hand, it becomes thinner and
the scaling law is in NHa−1.
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Kármán, Th. von 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–251.

Lielausis, O. 1975 Liquid metal magnetohydrodynamics. Atomic Energy Rev. 13, 527.

Loffredo, M. I. 1986 Extension of von Karman ansatz to magnetohydrodynamics. Mecanica 21,
81–86.

Lugt, H. G. 1996 Introduction to Vortex Theory. Vortex Flow Press, Potamac, Maryland.

Moreau, R. 1990 Magnetohydrodynamics. Kluwer.

Moreau, R. 1998 Magnetohydrodynamics at the laboratory scale: established ideas and new
challenges. Appl. Sci. Res. 58, 131–147.

Mück, B., Günther, C., Müller, U. & Bühler, L. 2000 Three-dimensional MHD flows in
rectangular ducts with internal obstacles. J. Fluid Mech. 418, 265–295.

Nanda, R. S. & Mohanty, H. K. 1970 Hydrodynamic flow in rotating channel. Appl. Sci. Res. 24,
65–78.

Roberts, P. H. 1967 Introduction to Magnetohydrodynamics. Longmans.

Shercliff, S. 1953 Proc. Camb. Phil. Soc. 49, 136.

Sommeria, J. 1988 Electrically driven vortices in a strong magnetic field. J. Fluid Mech. 189, 553–569.

Sommeria, J. & Moreau, R. 1982 Why, how and when MHD turbulence becomes two-dimensional.
J. Fluid Mech. 118, 507–518.

Tsinober, A. B. & Kolesnikov, Y. B. 1974 Experimental investigation of two-dimensional turbu-
lence behind a grid. Isv. Akad. Nauk. SSSR Mech. Zhid. i Gaza 4, 146.

Ziganov, O. & Thess, A. 1998 Direct numerical simulations of forced MHD turbulence at low
magnetic Reynolds number. J. Fluid Mech. 358, 299–333.


